Skip to main content

Print Data from a Sensor raspberry pi3

Print Data from a Sensor

To demonstrate how to print data from a sensor, here’s a program that displays the temperature from a DS18B20 Digital Temperature Sensor. There is some set up to do before you can get this to work on the Raspberry Pi, so check out our tutorial on the DS18B20 to see how.
In general, you take the input variable from your sensor and convert it to an integer to perform any calculations. Then convert the result to a string, and output the string to the display using lcd.write_string(sensor_data()):
import os
import glob
import time
from RPLCD import CharLCD
lcd = CharLCD(cols=16, rows=2, pin_rs=37, pin_e=35, pins_data=[33, 31, 29, 23])
os.system('modprobe w1-gpio')
os.system('modprobe w1-therm')
base_dir = '/sys/bus/w1/devices/'
device_folder = glob.glob(base_dir + '28*')[0]
device_file = device_folder + '/w1_slave'
def read_temp_raw():
    f = open(device_file, 'r')
    lines = f.readlines()
    f.close()
    return lines
#CELSIUS CALCULATION
def read_temp_c():
    lines = read_temp_raw()
    while lines[0].strip()[-3:] != 'YES':
        time.sleep(0.2)
        lines = read_temp_raw()
    equals_pos = lines[1].find('t=')
    if equals_pos != -1:
        temp_string = lines[1][equals_pos+2:]
        temp_c = int(temp_string) / 1000.0 # TEMP_STRING IS THE SENSOR OUTPUT, MAKE SURE IT'S AN INTEGER TO DO THE MATH
        temp_c = str(round(temp_c, 1)) # ROUND THE RESULT TO 1 PLACE AFTER THE DECIMAL, THEN CONVERT IT TO A STRING
        return temp_c
#FAHRENHEIT CALCULATION
def read_temp_f():
    lines = read_temp_raw()
    while lines[0].strip()[-3:] != 'YES':
        time.sleep(0.2)
        lines = read_temp_raw()
    equals_pos = lines[1].find('t=')
    if equals_pos != -1:
        temp_string = lines[1][equals_pos+2:]
        temp_f = (int(temp_string) / 1000.0) * 9.0 / 5.0 + 32.0 # TEMP_STRING IS THE SENSOR OUTPUT, MAKE SURE IT'S AN INTEGER TO DO THE MATH
        temp_f = str(round(temp_f, 1)) # ROUND THE RESULT TO 1 PLACE AFTER THE DECIMAL, THEN CONVERT IT TO A STRING
        return temp_f
while True:
    lcd.cursor_pos = (0, 0)
    lcd.write_string("Temp: " + read_temp_c() + unichr(223) + "C")
    lcd.cursor_pos = (1, 0)
    lcd.write_string("Temp: " + read_temp_f() + unichr(223) + "F")

Well, that about covers most of what you’ll need to get started programming your LCD with Python. Try combining the programs to get some interesting effects. You can display data from multiple sensors by printing and clearing the screen or positioning the text. You can also make fun animations by scrolling custom characters. If you have any problems or questions about setting up an LCD or programming it, just leave a comment below. If you want to get an email notification when we publish new articles, enter your email in the subscribe box at the top of this post. Talk to you next time!

Comments

Popular posts from this blog

IDENTITY-BASED PROXY-ORIENTED DATA UPLOADING AND REMOTE DATA INTEGRITY CHECKING IN PUBLIC CLOUD report

IDENTITY-BASED PROXY-ORIENTED DATA UPLOADING AND REMOTE DATA INTEGRITY CHECKING IN PUBLIC CLOUD ABSTRACT More and more clients would like to store their data to PCS (public cloud servers) along with the rapid development of cloud computing. New security problems have to be solved in order to help more clients process their data in public cloud. When the client is restricted to access PCS, he will delegate its proxy to process his data and upload them. On the other hand, remote data integrity checking is also an important security problem in public cloud storage. It makes the clients check whether their outsourced data is kept intact without downloading the whole data. From the security problems, we propose a novel proxy-oriented data uploading and remote data integrity checking model in identity-based public key cryptography: IDPUIC (identity-based proxy-oriented data uploading and remote data integrity checking in public cloud). We give the formal definition, system model and se...

A SHOULDER SURFING RESISTANT GRAPHICAL AUTHENTICATION SYSTEM

A SHOULDER SURFING RESISTANT GRAPHICAL AUTHENTICATION SYSTEM ABSTRACT Authentication based on passwords is used largely in applications for computer security and privacy. However, human actions such as choosing bad passwords and inputting passwords in an insecure way are regarded as”the weakest link” in the authentication chain. Rather than arbitrary alphanumeric strings, users tend to choose passwords either short or meaningful for easy memorization. With web applications and mobile apps piling up, people can access these applications anytime and anywhere with various devices. This evolution brings great convenience but also increases the probability of exposing passwords to shoulder surfing attacks. Attackers can observe directly or use external recording devices to collect users’ credentials. To overcome this problem, we proposed a novel authentication system PassMatrix, based on graphical passwords to resist shoulder surfing attacks. With a one-time valid login indicator and ...

garbage monitoring using arduino code with gsm

#include <SoftwareSerial.h> #include <LiquidCrystal.h> //LiquidCrystal lcd(7, 6, 5, 4, 3, 2); LiquidCrystal lcd(13, 12, 11, 10, 9, 8); SoftwareSerial mySerial(0,1); #define trigPin 2 #define echoPin 3 #define PIR_sensor 4 #define m11 5 #define m12 6 void setup() {    lcd.begin(16, 2);    lcd.print("    Garbage    ");    Serial.println("garbage ");   lcd.setCursor(0,1);   lcd.print("   Open Close    ");   Serial.println(" open close");   delay(3000);   lcd.clear();   //lcd.print(" ");   delay(2000); mySerial.begin(9600); // Setting the baud rate of GSM Module Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT);  pinMode(m11, OUTPUT);   pinMode(m12, OUTPUT);   } void loop() {  readPIR();  pingDist();  SendMessage(); } void pingDist ()   {     long duration, distance;...